Но бывает так, что ни диета, ни физкультура не помогают, и в организме развиваются патологические процессы, особенно в старости, когда соли кальция, совсем как в водопроводных трубах, начинают оседать на стенках сосудов. Происходит кальцинация — известкование, наступает кальциноз, или, как раньше называли эту болезнь, артериосклероз. Обызвествлённая ткань становится плотной и ломкой. В связи с этим интересно высказывание одного старого немецкого врача, утверждавшего, что артериосклероз — это старческая болезнь, которую можно пожелать каждому. Почему? Да потому, что увядающий организм не может больше восстанавливать свои утончающиеся артерии путём образования новой ткани и вместо этого посылает для их «ремонта» известь, которая цементирует повреждённые участки. Что же, может быть... Особая роль принадлежит кальцию в механизме мышечного сокращения. Этот процесс происходит при взаимодействии двух основных мышечных белков — миозина и актина. В результате присоединения ионов кальция актин становится способным реагировать с миозином. Соединяясь, они образуют основной сократительный элемент мышечных волокон — актомиозин, который обладаёт каталитической активностью: расщепляет АТФ, тем самым высвобождая энергию для мышечного сокращения. Без ионов кальция эта цепочка биохимических превращений не смогла бы функционировать.

Активность кальция как биометалла зависит прежде всего от механизма его прохождения через мембраны. И здесь мы снова должны прибегнуть к той модели, которая нам известна как насос. Принцип действия такого насоса аналогичен натриевому. Основные его «детали» — это фермент и ионный канал. В качестве первого выступает АТФ-аза с молекулярной массой 100 тыс, каналы же образуются сравнительно небольшими молекулами липо-протеина с массой 12 тыс.

Поддерживая определённую концентрацию ионов кальция, такой насос выполняет роль клеточного регулятора. Все здесь как будто бы ясно, однако невероятная универсальность кальция, влияющего практически на все внутриклеточные процессы, как-то не укладывалась ни в какие рамки. Оказалось, что в клетках, по крайней мере имеющих ядро, содержится особый белок — калмодулин, который способен связываться с ионами кальция при повышении их концентрации до определённого уровня. Вот такой весьма активный комплекс (а не сам кальций) и взаимодействует с разными ферментами, активируя их. По-видимому, калмодулин является регулятором концентрации ионов, запуская и выключая кальциевый насос.

А что если именно в работе насосов-невидимок и кроется загадка роковой зависимости сердечных заболеваний от жёсткости питьевой воды? Ведь сердце — это прежде всего мышцы, работа которых, как и всех других мышц, зависит от нормального поступления ионов кальция. И если их недостаточно, то развивается недуг.

Вот так и для работы любой микроскопической клетки живого организма, и для построения его опорной конструкции — скелета — везде необходим работяга кальций, самый универсальный металл из всех металлов жизни.

Вместо заключения

Замечательный советский биохимик академик В. А. Энгельгардт заметил: «Важнейшие функции и характерные специфические черты живых образований — наследственность, движение, функции органов чувств, энергетика, природа заболеваний, явления иммунитета...» Как мы уже успели узнать, любая из этих перечисленных характеристик живого так или иначе связана с присутствием в организме металлов.

Мы ограничились рассказом только о десяти металлах, биологическое действие которых пока доказано наиболее полно. Но, конечно же, этим числом не исчерпывается содержание металлов в организме. Их там гораздо больше. Достаточно сказать, что в живых существах обнаружено так же присутствие хрома, никеля, ванадия, стронция, олова, свинца, ртути, мышьяка, алюминия и даже таких экзотических металлов, как бериллий, цезий, рубидий, не говоря уж о серебре и золоте. Специалисты не исключают, что в нашем организме имеются все металлы менделеевской таблицы. Однако биологическая роль далеко не каждого из них ясна. Так или иначе, но содержание химических элементов в живых организмах отражает состав окружающего нас мира.

И все же... И все же совершенно неясно, зачем нам, например, такой редкостный и радиоактивный металл, как уран? Наш старый знакомый Гомо Кондитионалис содержит его в количестве 0,00009 грамма. Разумеется, это чрезвычайно малая величина, но пренебречь ею, видимо, нельзя. В последнее время некоторые исследователи, изучая накопление урана в живом вещёстве прошлых геологических эпох, пришли к весьма любопытному выводу — этот металл в значительной мере мог изменить ход биологической эволюции.

А для чего нам свинец, олово, ртуть или, скажем, золото? Что это — случайные примеси, попавшие в наш организм из посуды, столовых приборов, консервных банок, зубных коронок и пломб или даже благодаря... разбитым градусникам?

Содержание металлов в нашем организме привлекло к себе внимание и криминалистов. Дело в том, что судебные медики выявили определённую зависимость между концентрациями различных микроэлементов, благодаря чему можно идентифицировать не только биологический материал, но и установить причину смерти: болезнь, травму или отравление. Так, например, под влиянием этилового спирта в печени становится больше кальция, а содержание натрия и калия уменьшается, тогда как в сердце и почках при этом, наоборот, уровень кальция снижается.

Изучение содержания биометаллов и их соотношений чрезвычайно много значит и для диагностики. Известно, что нарушение баланса металлов в организме вызывается патологическими явлениями. Разработка методов ранней диагностики на основе микроэлементного анализа стоит сегодня на повестке дня, и особенно остро для сердечнососудистых заболеваний. Советские исследователи, изучая содержание металлов в крови больных ишемической болезнью сердца и инфарктом миокарда, установили повышение концентрации марганца и никеля при снижении уровня меди, железа и бария. Сравнительно недавно венгерские медики, работающие в этом направлении, обнаружили, что в пробах волос, взятых у больных, перенёсших инфаркт миокарда, содержание кальция в несколько раз меньше, чем в волосах здоровых людей. Группа американских учёных заметила отсутствие хрома в тканевых препаратах умерших от атеросклероза; в то же время у умерших от других болезней он имелся.

Думается, что даже по этим примерам можно составить представление о том, каким образом в недалёком будущем предполагается разработка надёжных диагностических методов не только для сердечно-сосудистых заболеваний, но и для других болезней.

Весьма интересно было бы затронуть тему о металлах и причинах возникновения так называемых эндемических (от греческого «эндемос» — местный) заболеваний, которые встречаются на ограниченных территориях, характерных низким содержанием в почвах и воде определённых микроэлементов. В изучение причин таких заболеваний большой вклад внесли крупные советские учёные — продолжатели идей В. И. Вернадского А. П. Виноградов и В. В. Ковальский.

Однако вместить в рамки научно-популярной книги все аспекты такой интереснейшей темы, как металлы и жизнь, трудно. Но остановимся напоследок ещё хотя бы на одной весьма важной проблеме, которую можно сформулировать так: металлы и рак.

О причинах, вызывающих раковые заболевания, сегодня имеется довольно много различных гипотез. Одна из них имеет прямое отношение к нашей теме. Ее авторы усматривают причину рака в проникновении в живые клетки «чужеродного» металла, который, конкурируя с «родным» металлом того или иного фермента, вызывает изменение его активности. Таким образом, противораковая стратегия, основанная на этой гипотезе, заключается в том, чтобы подобрать вещёство, которое могло бы удалять из организма такие «вредоносные» металлы. В общих чертах эта проблема нам знакома. Мы знаем, что вредные металлы можно выводить с помощью лигандов, связывающих их в комплексы.

Однако подобрать вещёства, которые целенаправленно прекращали бы рост опухолей, чрезвычайно трудно. Сегодня некоторые из них найдены. Они представляют именно комплексные соединения в основном органических вещёств. Хотя механизм их действия до конца не ясен, сторонники «металлической» гипотезы предполагают, что такие соединения способны образовывать в организме хелаты с металлами. Более того, утверждаётся, что противораковая активность этих вещёств повышается, если их вводить в больной организм в виде комплексов с металлами.